Recent History
September 30, 1874
Diabetes Mellitus and its dietetic treatment
Cantani divides his patients based on the status of their recovery using the all meat diet "My 73 cases of recovery can be divided, from the point of view of a rigorous recovery statistic, into 8 categories" and described his first category of "Cases cured and remained in good health to this day" to have 30 cases!
My 73 cases of recovery can be divided, from the point of view of a rigorous recovery statistic, into 8 categories:
Category. - Cases cured and remained in good health to this day (September 1874): these are numbers I, V, VI, VIII, XII, XIV, XV, XVI, XVIII, XIX, XXII, XXIII, XXXII, XXXVII, XXXIX , XLII, XLIII, XLV, XLVII, LI, LII, LIII, LIV, LV, LXII, LXIII, LXIV, LXVI, LXVII, LXXII. In all thirty cases.
Category.- Case of diabetes cured, dead, more than a year after returning to mixed food, due to any recurrent disease, without the sugar ever reappearing in the urine. These are numbers IX, X and XI. Three cases.
Category. - Cases of diabetes cured and remained notoriously healthy for a very long time, until the latest news, but not seen for some time. In this category we must classify nos III, VII, XX, XXI, XXIV, XXV, XXVI, XXVIII, XXXI, XXXIII, XXXV, XXXVIII, XL, XLI, XLIV, XLVI, XLVIII, XLIX, L, LVI, LVII, LVIII, LIX, LXI, LXXI. Or twenty-five cases.
Category. - Case of diabetes cured, enough to be able to return to a mixed diet, but having fallen ill again, following a new abuse of flour, pasta and sweets, and cured again by treatment. Nos. IV, XIII, XVII, XXVII, XXX, XXXVI, LX. Or seven cases.
Category. - Case of diabetes cured recently, being able to use moderately flour, fruits and even sweets, without the sugar reappearing in the urine: these are nos LXV, LXVIII, LXIX, LXX. In all four cases.
Category. - Cases of diabetes that have remained intermittent at long intervals, when the patient abuses sweets: Let there be two cases to this point numbers XXIX, XXXIV. The transient intermittence of diabetes was also observed in case XXX after recovery obtained: but here it was followed by the complete return of diabetes with its most terrible phenomena. There is still intermittence in the LVIII case, when the patient, recovery obtained, returns to the use of starchy foods. Finally, it was noted again in the LIX case, and there it came after abuse of the hay-fed, when the patient had taken a meal too loaded with hydrocarbons; it is cured by a return to treatment. In the LVIII and LIX cases, diabetic intermittence was observed with regular intervals, and with a very exact daily type: melituria then depended solely on meals; once the sugar that the organic forces had not been able to transform, it disappeared once again: this was a form of diabetes beginning in which the daily return of meals at the same times leads to a regular return of sugar with the daily type. (Author's note.)
Category. Case of diabetes cured, but became ill again a long time later, having returned to an almost exclusively starchy diet, and died as a result of diabetes, for not having resumed treatment. Here we must note case II. So there is only one.
Category. - Case cured for a short time and therefore not yet assured of recovery, then became slightly ill again following a premature abuse of prohibited foods, and finally died, not by the fact of diabetes, but by an intercurrent disease. Here we must cite the case LXXIII. So there is only one.
January 1, 1876
Le diabète sucré et son traitement diététique. (Diabetes Mellitus and its dietetic treatment)
Italian physician Cantani locks diabetic patients into rooms and uses fasting and a carnivore diet of lean meat, fat, and dilute alcohol to treat diabetes and his obituary spoke highly of him, saying he had a "clinical eye". He wrote a 500 page textbook on diabetes with recommendations to eat an exclusive meat diet to prevent glycosuria.
Nineteenth century diets for diabetes were just as varied as those of the twentieth century. The Italian physician Cantani, who had a large and lucrative private practice, enforced starvation by locking his patients in their rooms and feeding them on lean meat, fat and dilute alcohol [5].
Cantani treated his diabetic patients by eliminating carbohydrates and prescribing an exclusive meat diet.[3] He believed that stopping glycosuria was the major method of controlling diabetes.[4] He allowed his patients as many calories as they could tolerate without glycosuria. Later he limited daily food intake to about one pound of cooked meat. If glucosuria persisted, he fasted his patients.[5] The exclusive meat diet would continue for several months but if urine was not free of sugar it would extend to six or nine months.[3] To control glycosuria, Cantani would enforce his diet restrictions. He would often lock his patients in a room, so they adhered to the strict diet.[6] He performed microscopic studies on the organs from thousands of cases and observed that atrophy and fatty changes were more frequently found in the pancreas of diabetic patients than of non-diabetics.[7][8]
https://en.wikipedia.org/wiki/Arnaldo_Cantani
Professor Arnoldo Cantani, one of the most brilliant and distinguished of Italian physicians, died on May 1st, aged fifty-seven. His death was caused by Bright's disease, a malady concerning which he had written much. He was at the time of his death Professor of Clinical Medicine in the University of Naples. While at Naples he wrote monographs upon the “ Diseases of Metabolism,” “ Progressive Atrophy of the Skin," “ Lathyrismus," “ Enteroklysma,” “ Different Morbid Aspects of Individual Infective Disease,” to say nothing of a vast number of occasional monographs and notes on his favorite themes of fever, inflammation, and infection. “ The predominant note in Cantani’s character," writes a Neapolitan correspondent of The Lancet, “ was serenity. No one possessed a calmer, more perfectly balanced judgment; no one was further removed from all that savors of flattery or assentation. He had in a rare degree what professional men call the ‘ clinical eye ’ —a possession all the more remarkable in that he did not lay himself out so much for consultant practice as for investigation in the pathological laboratory. The honors, of which he had more than his share, came to him unsought, and he never was heard or seen to set store by them. Called in 1889 to the Senate of the kingdom, his health, never robust, kept him from taking part in its deliberations, except in rare crises in the State. Outside his professional sphere, and that was an extensive one, he had but one predilection—he was passionately fond of music.”
ARNALDO CANTANI, M.D., Professor of Clinical Medicine in the University of Naples. WE regret to announce the death of Professor Arnaldo Cantani, one of the foremost physicians and teachers of Italy, which took place on April 29th. He had been disabled by illness for about two years, but the end came somewhat unexpectedly on the twenty-fifth anniversary of his induction into the chair in which he won distinction as one of the most influential reformers of medical teaching in Italy. Cantani was born at Hainsbach in Bohemia in 1837, but his father was a Neapolitan. In 1855 he entered on the study of medicine in the University of Prague, where he took his degree in 1860. Immediately afterwards he was chosen by Professor Jaksch to be his principal assistant, and for some years he was Privat-docent, taking the professor's place in the lecture room on several occasions with much acceptance. While at Prague he translated Niemeyer's work, Special Pathology and Therapeutics, into Italian. There also he became acquainted with bsalvatore Tommasi, who was destined to take an equally prominent part in the medical renascence of Italy In 1864 the Italian Government offered Cantani the Chair of Materia Medica and Toxicology in the University of Pavia. In 1867 he won by competition the appointment of Physician and head of the Medical Clinic at the Ospedale Maggiorept Milan. Finally, in 1868, the Italian Government invited him to fill the Chair of Clinical Medicine in the University of Naples, which he continued to occupy till his death. So attached was he to the country which had readopted him, that he declined an offer of one of the chairs of clinical medicine in the University of Vienna, which was made to him on the death of Bamberger.
Cantani's influence as a teacher made itself felt chiefly In the infusion of the modern scientific spirit into Italian medicine, which even thirty years ago was still largely under the sway of " systems," in which facts were' made to fit the Procrustean bed of theory. Cantani laboured by precept and example to rehabilitate the accurate observation and careful collection of facts which had in the sixteenth and seventeenth centuries been the distinctive features of the Italian schools.
Cantani contributed largely to medical literature on cholera, typhoid fever, rabies, and diabetes. His most important work was his Trattato di Aateria Medica e Farmacologia; his last publication was a work entitled Pro Sylvis, which was a plea for the preservation of forests from the hygienic not less than the aesthetic point of view.
His funeral was attended by the whole medical faculty of Naples, by representatives of the Senate and Chamber of Deputies, by the Minister of Education, and by the administrative and executive authorities of the province of Naples, and an immense concourse of the general public. Funeral orations were delivered by Professor de Amicis, President of the Medical Faculty, by Professors Gallozzi, De Renzi, and others.
https://babel.hathitrust.org/cgi/ssd?id=uc1.31378008338645;page=ssd;view=plaintext;seq=28;num=14
"According to Vierordt, humans must necessarily absorb 120 grams per day. of albumin, 90 gram. of fat, 330 gram. of hydrated carbides, 2.635 gram. of water and 32 gram. mineral salts. These numbers would be an average. We can take them as such, and take them as a starting point in our studies or our experiences. Let us now study the toll of carnivores, and notice that meat does not is not only albumin, that it contains a quantity of combustible substances: gelatin, fats, muscle sugar, lactic acid. To feed a dog exclusively with meat, it is necessary to give him 40 to 50 grams each day. per kilogram. of its weight: below it will lose weight, above it it will increase in weight. Sees has found that under these conditions a dog absorbs more oxygen than with a mixed diet, and from the therapeutic point of view this is very important: this increase is due to albumin, not to fats nor with gelatins. Digested and assimilated albumin is not used in a single form: according to the uses to which it is to be employed, it will be transformed in various ways; it will take two main forms, which Voit has thus designated: tissue albumin (Organeiweiss), and circulating albumin or provisional albumin (Circulirendes Eiweiss, Vorrathseiweiss), or else blastema or plasma. On this point, Sees is agreement with Bischoff, J. Ranke and Weigelin, and also with our own research. "Tissue albumin" which we prefer to call organized albumin, constitutes the solid parts of tissues, membranes and cell nuclei, it is not as easily attacked by oxygen as "circulating albumin" which I call fluid albumin and which constitutes the amorphous liquid content of tissues. The more meat is eaten, and the more it accumulates in the body of circulating fluid albumin, the more oxygen it absorbs to burn this excess albumin, and produce urea or acid. uric. When a dog is fed on meat and fat, this last substance is an excellent fuel, which spares a lot of albuminates, by burning itself in their place, and taking their oxygen from them, which makes them less combustible. From this results this fact, that such a diet increases the weight of the body, the mass of the flesh, and sometimes also the fatty deposits. In the balance sheet of omnivores, it is about saving as much albuminates, supplying the organic oxidation process with another fuel that is even more economical than fats. By giving the dog meat and hydrocarbons, one could theoretically expect a greater saving of albuminates, since hydrocarbons are more combustible and more oxygenated than fats. In fact, this is what takes place: albuminates are spared, as well as fats, the accumulation of which is thus favored; if the hydrocarbons are introduced in excess, they very markedly decrease, according to Voit, the organic consumption. According to Pettenkofer and Voit, two parts of hydrocarbons are equivalent for the carnivore to one part of fat. Bread alone would not be enough to feed carnivores, or even man; to introduce a normal quantity of nitrogen, it would be necessary to absorb too much starch, which would not be tolerated for long. According to Ranke, collagens do not only spare albuminates, but also fats and even hydrocarbons circulating in the plasma stream: however this excellent fuel would provide little heat. The inorganic substances contained in our food are also of very great importance for nutrition and material exchange; the main ones are: sodium chloride, salts of soda, potash, lime, magnesia, phosphoric acid, water. All these inorganic bodies accelerate the endo- and exosmotic current, the plasma current, and increase the oxidation of circulating albumin. The salts of potash, and especially the phosphate of potash, promote, according to Kemmerich, the production of muscular tissue; according to Ranke, these potassium salts decrease the resistance to cells, would allow an easier passage of the plasma current, and would also promote the organization of albumin or albumin formation of tissue. The excess po- cup would become harmful by the too great depression of the vegetative activity. Water is essential as a liquid menstrual for all processes of diffusion or transformation, oxidation or decomposition, introduction or export. But the excess water in the tissues indicates a sluggish life, a slow and lazy renewal. The balance of herbivores is not essentially different from that of carnivores. The materials used are different, but the results are much the same. Herbivores introduce much more fuel, which promotes fatty deposits; it also seems that they digest at least part of the cellulose, which no carnivore does, including humans. By giving the herbivore nitrogenous food, we do not increase its musculature, but only its reserve of fat. Man is omnivorous, he eats everything: he offers considerable resistance, lives longer than most animals, thanks to his varied and restorative diet, but above all thanks to the influence of his system. nervous system so developed, on vegetative activity and the renewal of its tissues. Meat is certainly his primary food, for hunting, fishing and herding herds preceded agriculture; bread came in later. But the flesh, which man digests very well, remains his best food; it makes him stronger, more energetic, more resistant than is the man living exclusively on vegetables and fruits. And it is with peoples as with individuals: herbivorous peoples degenerate, carnivores progress, in this meaning we could say that the cuisine of peoples is part of their national history. The material renewal varies in intensity according to the various ages. The child oxidizes more, but produces more than he consumes: it is the most plastic age. Likewise, but to a lesser degree in the young man. In middle age, balance is established. In the elderly, despite less consumption, production was no longer sufficient to cover the deficit; regressive metamorphosis wins; it is the organism's first step towards returning to the inorganic state. Let us also note organic individuality as the cause of a variable renewal, too rapid in some, too slow in others. Assuming the correct proportions of the foods introduced, we can distinguish four ways of being of material renewal: 1 ° Regular and balanced renewal; 2 ° excessive consumption; 3 ° self-consumption or autophagy; 4 ° lack of water. In the first case, physiologists admit that all the albuminates introduced replace an equal quantity of organic substances; the more we introduce, the more tissues to renew will be consumed; all the decomposition products found in the urine and other excretions would therefore come from the tissues burned and consumed, and not from the albuminates introduced by the diet. In excessive consumption, there would be an excess introduction of albuminates, only a part of which would serve to renew the tissues, while the other would be burned directly in the blood. The body would not gain weight, since the amount of albuminates intended to increase body mass would be used as fuel. For me, I believe that even in humans well;
Page 21:
The fats introduced into the organism are burnt there, and give as the last residues water and carbonic acid. The hydrated carbides are starch and scre, and since starch always turns into sugar, all hydrocarbons should be considered sugar. By oxidation they are transformed into lactic acid, and give as last residues water and carbonic acid, as do fats
Page 33
To this order of abnormalities belong according to us: diabetes mellitus, oxaluria, gout, uric and calcareous gravel, adipose polysarchaia. (6) Renewal anomalies with consecutive systemopathy by abnormal elaboration of nutrient materials absorbed into the blood, among which we note: Rickets, Osteomalacia, (c) Renewal anomalies with consecutive systemopathy, for example excess or insufficiency in the absorption of certain food substances, which would be scurvy, hydremia and hydrorgania. 2 ° Renewal abnormalities with systemopathy by constitutional defect, which primarily resides in the tissues themselves, irregularly developed, and, for that, endowed with abnormal reactions or little resistance: the main ones are: Nervous erethism, Scrofulosis, Hemophilia, Chlorosis. 3 ° Anomalies of material renewal with systemopathy, having the character of reaction to agents hostile to organic life, which have penetrated into the tissues or into the circulating blood: these harmful agents come either from the economy itself , or from the outside world, and disturb the renewal of the chemical and morphological cular. Here we find: Fever, Primary phlogosis in general, and in particular acute or chronic rheumatism, certain generalized eczemas, certain fleeting erythemas, urticaria, etc., Virulent infection (contagious diseases and mias - matics), Chemical poisoning (acetonemia, cholemia, ammoniaemia, blood dissolution), Chemical poisoning (lead poisoning, arsenicism, hydrargyrosis, etc., ergotism, lathyria, etc.). In diseases where the whole organism changes its type of vegetation, of chemical direction, the organism transforms food substances to a certain point, without leading them to complete decomposition, thus interrupting the series of normal transformations. Its processes of biological chemistry are no longer sufficient for their task, and the imperfect products of their elaboration remain useless or harmful: these products, by accumulating, all become in the long run very harmful. Examples include diabetes, gout, polysarchaia, oxaluria. The diseases of this group can affect the entire economy more or less seriously, preferably without affecting any organ. Other times the abnormal or retained products almost exclusively affect certain organs or certain tissues, which should have eliminated them in another form, as happens with kidney stones, including oxaluria. At other times the whole organism is affected, but certain organs feel it especially and in a very special way,
Page 35:
By systemopathies I mean those diseases of renewal, those anomalies of organic chemism, in which the disturbance of the processes of chemical transformation affects the nutrition of the whole organism less than that of a specific type. of tissue, of a physiological and histological system of our tissues. Given an alteration of the blood crase, it is easily understood that certain tissues suffer from it more than others, and that this influence extends to all the tissues having between them a certain affinity of nutritional needs, and belonging to the same histological system. A chemical substance whose presence or preponderance in the blood will alter the nutrition of a bone, can and must interfere with the nutrition of other bones: from then on all other bones will be disposed to become diseased, if an occasional cause occurs. Likewise, a substance capable of making the serous membranes of the joints sick can act on the pericardium, endocardium, pleura and other serous membranes. This is the case in rickets, osteomalacia, scurvy, hydremia, hemophilia, scrofulosis, nervous erythema. Finally, in the diseases which have a character of reaction to the harmful agents which have penetrated into the blood, we find above all affected a physiological system: the skin and the mucous membranes in eruptive fevers, the hemocytopoetic and lymphatic glandules in the ileo - typhus, muscles and nerves in lead poisoning, muscles in lymphadenism, etc. In phlogoses which present several foci, It is understood that there is not a single disease without secondary alteration in the composition of the blood, and without at least a local disturbance of molecular renewal. This disorder can spread secondarily to the entire economy. In the course of these lessons, we will mainly deal with the diseases that have been studied in our studies from the point of view of molecular renewal. The most completely treated will be diabetes mellitus. We will speak of others, as much as is possible in the present state of our knowledge, from the pathologico-etiological and therapeutic point of view.
Page 39:
The Portuguese Amato Lusitano says he cured two diabetics by a very nourishing diet and the use of purgatives. Maybe' Were there cases beginning treated by the diet especially meat. Another Portuguese, Zacuto Lusitano, cures two cases with donkey milk: this is very interesting if we think of the undoubted advantages that we have obtained from the use. lactic acid, and the cure by the milk diet proposed today in England by Donkin. The Italian Cardano had the opportunity to study diabetes on himself, probably it was diabetes insipidus. He also describes a case observed in a young girl, and the first he weighed the urine: according to her calculation, this young girl absorbed only 7 pounds of solid food or drink each day, and gave 36 pounds of urine.
Page 41:
Sydenham came up with an idea, which is like the prelude to current ideas. According to him diabetes is an assimilation disease, in the sense that the chyle is not fully digested in the blood, and should therefore be eliminated by the kidneys as a foreign body. For treatment he strongly recommended a rich diet in meat, and narcotics, especially theriac.
Page 42:
Morton regarded diabetes as a kind of phthisis, and attributed the mild flavor of the urine to the flow of the sweet chyle to the kidneys. In etiology, he cites the influence of heredity, kinship, race. He encountered diabetes in the father and son, and another time in a small child who had lost three brothers to diabetes.
Mead maintains that diabetes is a disease of the liver: he wants to prove it by autopsies which all showed him steatomatosis of the liver. He explains the sweet taste of urine by the separation of salt from bile.
Dobson demonstrated that diabetic urine can produce alcohol and vinegar by fermentation: he succeeded in preparing very clearly sugar by evaporating the urine: he also discovered the sweet flavor of the serum of the blood of diabetics, and thus demonstrated that sugar exists in the blood of these patients and is not formed in the kidneys. According to him, it is a defect of assimilation of the chyle which causes the glycosuria: the sugar of the chyle accumulating unaltered in the blood, would come out by the urine. This shows that Dobson already admitted the passage of sugar from food into the blood; he also admitted an abnormal fermentation, and believed that the acidic breath of diabetics was due to the acid fermentation of the sugar contained in saliva.
Cullen said the diabetes was neuropathy, a spastic disease. However, he recognized the vice of assimilation of chyle. He denounced the ineffectiveness of all remedies.
Home recognized that by weighing not only the drinks introduced, but also the more or less liquid foods, the quantity of urine does not exceed the quantity of liquids absorbed; he also noticed that the quantity of urine emitted is greater at certain times. Home made quantitative analyzes, and weighed the sugar obtained; he had in one patient an ounce of sugar for a pound of urine, in another an ounce and a half. He confirmed the fermentation capacity of urine with the addition of yeast, and thus showed that it lost its sweet flavor to take on that of small beer. As for the theory, he accepted Dobson's: he treated his patients with a diet consisting mainly of meat.
Page 44:
Here we close our second period by noting that several of the authors cited lived after the publication of Rollo's works, works intended to prepare for the era of experimental studies. The third period, therapeutic period, is again inaugurated by an Englishman, John Rollo, who at the end of the last century published the story of two cases of diabetes. Rollo was the first to emit, on the pathogenesis of diabetes, a theory which, modified on various points, became widely later; many authors attribute their authorship to Bouchardat. According to this theory, diabetes is a disease of the stomach with overactivity, with exaggerated secretion of abnormal gastric juice, which converts all starchy substances into sugar; this sugar absorbed in the blood would come out with the urine. Note, however, that Rollo did not know that starch normally turns into sugar. This is why he advises to treat diabetes with an especially animal diet, and with drugs that slow down the activity of the stomach: vines and fats only at dinner and at supper: at breakfast one and a half liters of milk, with buttered bread. As drugs, ammonium sulphide, opium and emetics. This treatment, as we can see, somewhat resembled the Bouchardat or Seegen regime. In the hands of Rollo and his contemporaries, he gave mediocre results, which the author attributes to the inaccuracy of patients in following their diet: he notes that they have frequent indigestion, disgust for meat, gastroenteric catarrhs, and he attributes all this to the meat diet: it seems to us that one could, with all appearance, attribute to the drugs indicated above ammonium sulphide, ipecac, stibiae tartar, etc. My patients tolerate a much more rigorous diet and that for several months; they digest very well and eat perfectly.
After Rollo we have Bouchardat who adopted the same theories, however modifying them so as to adapt them: 1 ° to the discovery made by Tiedemann and Gmelin, that starch is normally transformed into sugar in the intestine, by action of saliva, pancreatic and enteric juice, 2 ° to this fact, demonstrated by Magendie, that this sugar is normally absorbed in the blood. Bouchardat, also admitting that the cause of diabetes is stomach disease, says that starch is transformed into sugar so quickly that too much of it enters the blood in a given time, and the blood, overloaded with sugar, lets part of it escape through the urine. This is Rollo's theory and the same overactivity of the stomach: it is still the same therapy. Bouchardat menus have become famous: meat, cabbages, peaches, lemons, gluten bread, which should only contain nitrogenous substances, and which, in fact, contains far too much starch. It cannot be denied that, of all the treatments offered so far, that of Bouchardat, which basically is that of Rollo, minus ammonium sulphide and emetics, has had the best fortune and deserved it. The goal was not completely achieved, because the regime is not severe enough, but it is very close to the truth: none of the authors and practitioners who came after Bouchardat could neglect the use of his culinary menu.
Prout also believed that diabetes is a form of dyspepsia: but he saw it as a defect in stomach activity, a difficulty in assimilating sugary foods.
Gregor, from London, argued that diabetes resides in the stomach.
Griesinger expressed the opinion that diabetes depends on rather qualitative disturbances in the digestive functions of the stomach, because the disease often begins with noticeable disturbances in digestion. According to him, the great thirst of the diabetic who eats starches, his less thirst when he eats meat, cannot be explained, with the hepatic theories of diabetes, but rather by gastric digestion disorders, by the rapid transformation of starch into sugar, and rapid absorption of sugar into the blood. In addition, the alteration of the digestive ferment of the stomach is a proven fact; the stomach juice of a diabetic on an empty stomach, obtained by vomiting, would contain a ferment which rapidly transforms starch into sugar, which normal gastric sugar would not. Griesinger regrets that this difference has not been sufficiently taken into account; he also admits as possible that, in the stomach and intestines, the albuminates ingested provide sugar in diabetics.
January 2, 1876
Diabetes mellitus and its dietetic treatment
Cantani summarizes that his cure only works if the patient wants to be cured, and those who return to mealy foods and sweets get sugar in their urine once more.
LESSON SEVEN Observations of diabetics not completely cured or dead.
SUMMARY. Cases of diabetes which cannot be cured due to lack or insufficient treatment. Cases which do not heal completely with the treatment. Absolutely incurable cases. · Clinical observations of the cases of diabetes observed by me, and which are not cured completely (LXXIV to XCVII).
Observations of cases of diabetes followed by death (XCVIII to CV). GENTLEMEN, If the cases exposed in the preceding lesson are to be regarded as cases of cure, since the patients can return to the mixed feeding, provided that they never again abuse mealy and sweets, the cases that I will report to you today must be regarded as improved: one could say that their diabetes is suppressed, that the diabetic symptoms are overcome; however, since glycosuria persists, or recurs on the first attempt at sugary foods, these cases cannot be considered cured.
Let us note first that among all these patients, there are some who could not be cured, only because they did not take the cure for a sufficient time, in fact because they do not want to be cured; this is the greatest number. The sugar disappeared, the patients quickly left the cure, and the sugar returned. I have seen many of these cases, and others have seen them as well. A month, and even two, of very rigorous cure seldom suffices, and only in recent diabetes: it takes at least three months, and three more months to arrange for a gradual return to the mixed diet, when these cases cannot be considered cured. the patient will not have sufficient confidence and patience to continue the treatment, it will be better for the doctor not to recommend it: he will spare himself a disillusion and will spare his patient a painful and fruitless treatment. There is another series of patients who do not recover because, with them, the disease is too advanced: treatment can improve their condition, but no longer eliminate the disease. Others, who can be considered almost cured, can eat anything except cane sugar and starch: still others can only tolerate vegetables low in glycosides, but milk and fruit. bring back melituria: finally others can only eat meat and fat, and are forced to continue the rigorous cure indefinitely, under penalty of seeing glycosuria reappear: in the long run, the sugar reappears in the urine despite the diet. There is another group of cases in which diabetes has to be declared incurable, although it improves steadily as long as the patients remain under our treatment. Indeed, we see the painful symptoms that we can really call diabetic disappear, thirst, polyuria, impotence, progressive slimming; the individual lives in a tolerable situation, he can satisfy his obligations, provided he continues a rigorous cure or so. But there is still glycosuria, which cannot be suppressed by any means (except chronic man-made poisonings with opium, etc.). It goes without saying that you cannot cure a diabetic, nor logically have this claim when consumption and the general stagnation have brought about the irreparable atrophy or the destruction of an organ essential to the continuation of life
January 1, 1882
Obesity (Corpulence) and its treatment according to physiological principles
the German physiologist Wilhelm Ebstein cites Cantani as an authority for the use of pure fat in diabetic diets. “up to about 200 grams of fat is well tolerated by the majority of diabetics”
Cantani’s dietary regime involved periods of energy restriction, however the German physiologist Wilhelm Ebstein cites Cantani as an authority for the use of pure fat in diabetic diets. In 1892 Ebstein published his comprehensive review of the literature on diet, lifestyle, and diabetes, Über die Lebensweise der Zuckerkranken, which includes the statement that “up to about 200 grams of fat is well tolerated by the majority of diabetics” [7]. Also in 1892, Ebstein’s book on Corpulence and its Treatment on Physiological Principles, which contained brief summaries of his findings on fat and diabetes, was translated into English [8]. In this book and his subsequent work On the Regimen to be Adopted in Cases of Gout Ebstein discussed experimental evidence on the metabolism of protein and the desirability of limiting both protein and carbohydrate, and increasing fat, in the treatment of metabolic diseases [9].
German Txt (Very hard to read)
https://archive.org/stream/diefettleibigkei00ebst/diefettleibigkei00ebst_djvu.txt
English Translation Scanned PDF:
https://dlcs.io/pdf/wellcome/pdf-item/b21050533/0
Ebstein describes Rabbit Starvation:
Page 37:
Notwithstanding the vastly important part played by nitrogenous food in human dietetics, those substances that contain no nutritive ingredients except albumen, as for instance flesh destitute of fat, are not proper food for man. As flesh satisfies his demand for carbon only when it is consumed four times in excess of the quantity required to yield the nitrogen needed for his nourishment, such a course would in the first place be far from economical, seeing that meat is one of the dearest articles of food. And then we should very soon find it impossible to consume every day the 90 oz. of pure flesh required for this purpose.
The dietetic systems of treatment now in vogue are based on an almost exclusively albuminous diet. In 1850 Chambers had already pronounced in favour of this regimen, his system excluding all fat substances such as fat, oil, butter, milk, cream, as well as sugar. Of starch-flour in the form of potatoes and even of bread he remarked, that they should be looked on with the greatest suspicion. He also insisted on a diminished consumption of liquids.
We thus perceive that strictly speaking Chambers' cure differs in no respect from that, by which Banting grew lean in the hands of his physician Harvey, and which has received the name of the Banting cure from the patient, who has written an account of his malady and curative process. From it's specially operative factor Kisch has named it the "Anti-Fat Cure".
Cantani has gone still more vigourously to work. He bars not only all fats - fat meat, fat fish, cheese (owing to its sebacic acid), but all farinaceous preparations, all saccharine foods, sweet and aromatic fruits. Only when the patient is unable to continue this diet long enough, either through excessive repugnance to meat, or nausea of the stomach, or muscular debility, he combines it with the Harvey-Banting system, which also no doubt anathematises the fats, but allows a certain quantity of carbohydrates.
Hence these cures have this in common that both alike to the very utmost exclude fats, which they regard as the chief source of the accumulation of fat in the body.
Now I will by no means deny that a series of cures does result from the Harvey-Banting and Cantani methods, that is to say, by these means corpulent persons become thin. But on the other hand it must be allowed that:
Page 44:
Ebstein strongly supports fat for satiety.
"I would now specially insist that the suitable quantity of alimentary fat must not forsooth remove hunger in such a way as to produce dyspeptic symptoms or injure the digestion; and this I dwell upon because the question has already been more than once placed before me by competent colleagues. It is of course a tacit assumption that the fat like all other human aliments, be of unexceptionable quality. The experiments made on persons suffering from fistula in the stomach, have already shown that fat substances disturb the digestion only when they are consumed too abundantly, and I have myself often enough administered with surprising succcess alimentary fat to dyspeptics of the worst type, while limitng their allowance of carbohydrates. But my own numerous experiences have also convinced me, that in the treatment of corpulency fat agrees perfectly well even with those, who had previously regarded it with nausea. I have even noticed a total disappearance of the dyspeptic affections, which the corpulent had hitherto brought upon themselves by an improper diet. The patients preserve a good appetite, which they must learn to moderate by yielding only the actual feeling of hunger.
The reason of this alleviation of the feeling of hunger with a proper allowance of fat in the diet is due to the circumstance, that fat checks the decomposition of albumen, and that consequently the craving to make good the waste makes itself felt more slowly and less urgently. Precisely because fewer albuminates have been decomposed, fewer require to be replaced. As by the addition of fat to the diet in the same proportion as the decomposition of albumen is diminished, the quantity of nitrogenous refuse from the assimilated substances is also limined, a smaller amount of drink is needed for its removal. Hence in this way thirst as well as hunger becomes appeased. That fats reduce the craving for food was already known to Hippocrates, who remarks in the section dealing with those that wish to become fat or lean: "the dishes must be succelent, for in this way we are easiest sated." Very interesting to me was a communication from Loew, bearing on the point that the use of fat is also effective in checking the craving for liquids. After the consumption of fat in hot climates he always noticed a diminished demand for water; thirst became decidely less irksome.
This property of fat to produce satiety more rapidly, to diminish the craving for food and abate the feeling of thirst, facilitates to an extraordinary degree the introduction of the modified diet. For to the sacrifices which after all must in any case be required of the corpulent, nothing further need be superadded at least in this direction. On the contrary, the permission to enjoy certain succulent things, always of course in moderation, as for instance salmon, pate de foie gras and such like delicacies, reconciles the corpulent gourmet to his sacrifices. These consist in the exclusion of the carbohydrates. Sugar, sweets of all kinds, potatoes in every form I forbid unconditionally. The quantity of bread is limited at most to from 3 to 3.5 oz a day, and of vegetables I allow asparagus, spinach, the various kinds of cabbage and especially the leguminous, whose value as conveyors of albumen, as Voit rightly observes, is known to few. Of meats I exclude none, and the fat in the flesh I do not wish to be avoided, but on the contrary sought after. I permit bacon fat, fat roast pork and mutton, kidney fat, and when no other fat is at hand I recommend marrow to be added to soups. I allow the sauces as well as the vegetables to be made juicy, as did Hippocrates, only for his sesam-oil I substitute butter.
In spite of all this it would be little to the point to say that I treat the corpulent with fat, whereas I simply vindicate the full claims to which fat is entitled as an article of food. I do not suppose that the corpulent, with who we are practically concerned, will have to consume anything like the quantity of fat that Voit concedes to the working man, or that is allowed to the rank and file of the German imperial army in time of war, say from 7 to 9 oz. daily. I reduce this daily allowance of fat to from 2 to 3.5 oz on an average. The quantity of course changes with the individual relations, nor is it the same for every day. Under the influence of this diet it becomes possible to do with a less quantity of meat. This again I reduce to fully one half or three-fifths of the quantity required in the Banting system, which varies from 13 to 16 oz. a day.
January 1, 1885
FUNCTIONAL AND INFLAMMATORY DISEASES OF THE STOMACH. BY SAMUEL G. ARMOR, M.D., LL.D.
Functional Dyspepsia (Atonic Dyspepsia, Indigestion).
The dietary treatment of dyspepsia was described: the diet, for instance, of bodily labor should consist largely of digestible nitrogenous food, and meat, par excellence, should be increased in proportion as muscular exercise is increased.
FUNCTIONAL AND INFLAMMATORY DISEASES OF THE STOMACH.
BY SAMUEL G. ARMOR, M.D., LL.D.
Functional Dyspepsia (Atonic Dyspepsia, Indigestion).
As a rule, the food should be such as will require the least possible exertion on the part of the stomach. Raw vegetables should be forbidden; pastries, fried dishes, and all rich and greasy compounds should be eschewed; and whatever food be taken should be eaten slowly and well masticated. Many patients digest animal better than vegetable food. Tender brown meats, plainly but well cooked, such as beef, mutton, and game, are to be preferred. Lightly-cooked mutton is more digestible than beef, pork, or lamb, and roast beef is more digestible than boiled. Pork and veal and salted and preserved meats are comparatively indigestible. Bread should never be eaten hot or fresh—better be slightly stale—and bread made from the whole meal is better than that made from the mere starchy part of the grain. Milk and eggs and well-boiled rice are of special value.
But to all these general dietetic rules there may be exceptions growing out of the peculiarities of individual cases. These should be carefully studied. The aged, for obvious reasons, require less food than the young; the middle-aged, inclined to obesity and troubled with feeble digestion, should avoid potatoes, sweets, and fatty substances and spirituous liquors; persons suffering from functional derangements of the liver should be put, for a time, on the most restricted regimen; while, on the contrary, the illy fed and badly-nourished require the most nutritious food that can be digested with comfort to the patient.
To these general predisposing causes may be added indigestion occurring in febrile states of the system. The cause here is obvious. In all general febrile conditions the secretions are markedly disturbed; the tongue is dry and furred; the urine is scanty; the excretions lessened; the bowels constipated; and the appetite gone. The nervous system also participates in the general disturbance. In this condition the gastric juice is changed both quantitatively and qualitatively, and digestion, as a consequence, becomes weak and imperfect—a fact that should be taken into account in regulating the diet of febrile patients. From mere theoretical considerations there can be no doubt that fever patients are often overfed. To counteract the relatively increased tissue-metamorphosis known to exist, and the consequent excessive waste, forced nutrition is frequently resorted to. Then the traditional saying of the justly-celebrated Graves, that he fed fevers, has also rendered popular the practice. Within certain bounds alimentation is undoubtedly an important part of the treatment of all the essential forms of fever. But if more food is crowded upon the stomach than can be digested and assimilated, it merely imposes a burden instead of supplying a want. The excess of food beyond the digestive capacity decomposes, giving rise to fetid gases, and often to troublesome intestinal complications. The true mode of restoring strength in such cases is to administer only such quantities of food as the patient is capable of digesting and assimilating. To this end resort has been had to food in a partially predigested state, such as peptonized milk, milk gruel, soups, jellies, and beef-tea; and clinical experience has thus far shown encouraging results from such nutrition in the management of general fevers. In these febrile conditions, and in all cases of general debility, the weak digestion does not necessarily involve positive disease of the stomach, for by regulating the diet according to the digestive capacity healthy digestion may be obtained for an indefinite time.
Exhaustion of the nerves of organic life strongly predisposes to the atonic forms of dyspepsia. We have already seen how markedly the digestive process is influenced by certain mental states, and it is a well-recognized fact that the sympathetic system of nerves is intimately associated with all the vegetative functions of the body. Without a certain amount of nervous energy derived from this portion of the nervous system, there is failure of the two most important conditions of digestion—viz. muscular movements of the stomach and healthy secretion of gastric juice. This form of indigestion is peculiar to [p. 441]the ill-fed and badly-nourished. It follows in the wake of privation and want, and is often seen in the peculiarly careworn and sallow classes who throng our public dispensaries. In this dyspepsia of exhaustion the solvent power of the stomach is so diminished that if food is forced upon the patient it is apt to be followed by flatulence, headache, uneasy or painful sensations in the stomach, and sometimes by nausea and diarrhoea. It is best treated by improving in every possible way the general system of nutrition, and by adapting the food, both in quantity and quality, to the enfeebled condition of the digestive powers. Hygienic measures are also of great importance in the management of this form of dyspepsia, and especially such as restore the lost energy of the nervous system. If it occur in badly-nourished persons who take little outdoor exercise, the food should be adapted to the feeble digestive power. It should consist for a time largely of milk and eggs, oatmeal, peptonized milk gruels, stale bread; to which should be added digestible nitrogenous meat diet in proportion to increased muscular exercise. Systematic outdoor exercise should be insisted upon as a sine quâ non. Much benefit may be derived from the employment of electric currents, and hydrotherapy has also given excellent results. If the indigestion occur in the badly-fed outdoor day-laborer, his food should be more generous and mixed. It should consist largely, however, of digestible nitrogenous food, and meat, par excellence, should be increased in proportion to the exercise taken. Medicinally, such cases should be treated on general principles. Benefit may be derived from the mineral acids added to simple bitters, or in cases of extreme nervous prostration small doses of nux vomica are a valuable addition to dilute hydrochloric acid. The not unfrequent resort to phosphorus in such cases is of more than doubtful utility. Some interesting contributions have been recently made to this subject of gastric neuroses by Buchard, Sée, and Mathieu. Buchard claims that atonic dilatation of the stomach is a very frequent result of an adynamic state of the general system. He compares it to certain forms of cardiac dilatation—both expressions of myasthenia. It may result from profound anæmia or from psychical causes. Mathieu regards mental depression as only second in frequency. Much stress is laid upon poisons generated by fermenting food in the stomach in such cases. It may cause a true toxæmia, just as renal diseases give rise to uræmia. Of course treatment in such cases must be addressed principally to the general constitution.
But of all predisposing causes of dyspepsia, deficient gastric secretion, with resulting fermentation of food, is perhaps the most prevalent. It is true this deficient secretion may be, and often is, a secondary condition; many causes contribute to its production; but still, the practical fact remains that the immediate cause of the indigestion is disproportion between the quantity of gastric juice secreted and the amount of food taken into the stomach. In all such cases we have what is popularly known as torpidity of digestion, and the condition described is that of atony of the stomach. The two main constituents of gastric juice—namely, acid and pepsin—may be deficient in quantity or disturbed in their relative proportions. A certain amount of acid is absolutely essential to the digestive process, while a small amount of pepsin may be sufficient to digest a large amount of albuminoid food. [p. 442]Pure unmixed gastric juice was first analyzed by Bidder and Schmidt. The mean analyses of ten specimens free from saliva, procured from dogs, gave the following results:
Lack of the normal amount of the gastric secretion must be met by restoring the physiological conditions upon which the secretion depends. In the mean time, hydrochloric and lactic acids may be tried for the purpose of strengthening the solvent powers of the gastric secretion.
EXCITING CAUSES.—The immediate causes of dyspepsia are such as act more directly on the stomach. They embrace all causes which produce conditions of gastric catarrh, such as excess in eating and drinking, imperfect mastication and insalivation, the use of indigestible or unwholesome food and of alcohol, the imperfect arrangement of meals, over-drugging, etc.
Of exciting causes, errors of diet are amongst the most constantly operative, and of these errors excess of food is doubtless the most common. The influence of this as an etiological factor in derangement of digestion can scarcely be exaggerated. In very many instances more food is taken into the stomach than is actually required to restore tissue-waste, and the effects of such excess upon the organism are as numerous as they are hurtful. Indeed, few elements of disease are more constantly operative in a great variety of ailments. In the first place, if food be introduced into the stomach beyond tissue-requirements, symptoms of indigestion at once manifest themselves. The natural balance betwixt [p. 443]supply and demand is disturbed; the general nutrition of the body is interfered with; local disturbances of nutrition follow; and mal-products of digestion find their way into the blood. Especially is this the case when the excessive amount of food contains a disproportionate amount of nitrogenous matter. All proteid principles require a considerable amount of chemical alteration before they are fitted for the metabolic changes of the organism; the processes of assimilative conversion are more complex than those undergone by fats and amyloids; and it follows that there is proportional danger of disturbance of these processes from overwork. Moreover, if nitrogenous food is in excess of tissue-requirement, it undergoes certain oxidation changes in the blood without becoming previously woven into tissue, with resulting compounds which become positive poisons in the economy. The kidneys and skin are largely concerned in the elimination of these compounds, and the frequency with which these organs become diseased is largely due, no doubt, to the excessive use of unassimilated nitrogenous food. Then, again, if food be introduced in excess of the digestive capacity, the undigested portion acts directly upon the stomach as a foreign body, and in undergoing decomposition and putrefying changes frets and irritates the mucous membrane. It can scarcely be a matter of doubt that large groups of diseases have for their principal causes excess of alimentation beyond the actual requirements of the system. All such patients suffer from symptoms of catarrhal indigestion, such as gastric uneasiness, headache, vertigo, a general feeling of lassitude, constipation, and high-colored urine with abundant urates, together with varied skin eruptions. Such cases are greatly relieved by reducing the amount of food taken, especially nitrogenous food, and by a systematic and somewhat prolonged course of purgative mineral waters. Europe is especially rich in these springs. The waters of Carlsbad, Ems, Seltzer, Friedrichshall, and Marienbad, and many of the alkaline purgative waters of our own country, not unfrequently prove valuable to those who can afford to try them, and their value shows how often deranged primary assimilation is at the foundation of many human ailments. The absurd height to which so-called restorative medicine has attained within the last twenty years or more has contributed largely to the production of inflammatory forms of indigestion, with all the evil consequences growing out of general deranged nutrition.
The use of indigestible and unwholesome food entails somewhat the same consequences. This may consist in the use of food essentially unhealthy or indigestible, or made so by imperfect preparation (cooking, etc.). Certain substances taken as food cannot be dissolved by the gastric or intestinal secretions: the seeds, the skins, and rinds of fruit, the husks of corn and bran, and gristle and elastic tissue, as well as hairs in animal food, are thrown off as they are swallowed, and if taken in excess they mechanically irritate the gastro-intestinal mucous membrane and excite symptoms of acute dyspepsia, and not unfrequently give rise to pain of a griping character accompanied by diarrhoea. Symptoms of acute dyspepsia also frequently follow the ingestion of special kinds of food, such as mushrooms, shellfish, or indeed fish of any kind; and food not adapted to the individual organism is apt to excite dyspeptic symptoms. Appetite and digestion are also very much influenced by the life and [p. 444]habits of the individual. The diet, for instance, of bodily labor should consist largely of digestible nitrogenous food, and meat, par excellence, should be increased in proportion as muscular exercise is increased. For all sorts of muscular laborers a mixed diet is best in which animal food enters as a prominent ingredient. Thus, it has been found, according to the researches of Chambers, that in forced military marches meat extract has greater sustaining properties than any other kind of food. But with those who do not take much outdoor exercise the error is apt to be, as already pointed out, in the direction of over-feeding. It cannot be doubted at the present time that over-eating (gluttony) is one of our popular vices. Hufeland says: "In general we find that men who live sparingly attain to the greatest age." While preventive medicine in the way of improved hygiene—better drainage, better ventilation, etc.—is contributing largely to the longevity of the race, we unfortunately encounter in more recent times an antagonizing influence in the elegant art of cookery. Every conceivable ingenuity is resorted to to tempt men to eat more than their stomachs can properly or easily digest or tissue-changes require. The injurious consequences of such over-feeding may finally correct itself by destroying the capacity of the stomach to digest the food.
Food may also be introduced into the stomach in an undigestible form [p. 445]from defects of cookery. The process of cooking food produces certain well-known chemical changes in alimentary substances which render them more digestible than in the uncooked state. By the use of fire in cooking his food new sources of strength have been opened up to man which have doubtless contributed immeasurably to his physical development, and has led to his classification as the cooking animal. With regard to most articles the practice of cooking his food beforehand is wellnigh universal; and especially is this the case with all farinaceous articles of food. The gluten of wheat is almost indigestible in the uncooked state. By the process of cooking the starchy matter of the grain is not only liberated from its protecting envelopes, but it is converted into a gelatinous condition which readily yields to the diastasic ferments. Roberts, in his lectures on the Digestive Ferments, points out the fact that when men under the stress of circumstances have been compelled to subsist on uncooked grains of the cereals, they soon fell into a state of inanition and disease.
Animal diet is also more easily digested in the cooked than in the raw state. The advantage consists chiefly in the effects of heat on the connective tissue and in the separation of the muscular fibre. In this respect cooking aids the digestive process. The gastric juice cannot get at the albumen-containing fibrillæ until the connective tissue is broken up, removed, or dissolved. Hot water softens and removes this connective tissue. Hence raw meat is less easily digestible. Carnivorous animals, that get their food at long intervals, digest it slowly. By cutting, bruising, and scraping meat we to a certain extent imitate the process of cooking. In many cases, indeed, ill-nourished children and dyspeptics digest raw beef thus comminuted better than cooked, and it is a matter of observation that steamed and underdone roast meats are more digestible than when submitted to greater heat.
Some interesting observations have been made by Roberts on the effects of the digestive ferments on cooked and uncooked albuminoids. He employed in his experiments a solution of egg albumen made by mixing white of egg with nine times its volume of water. "This solution," says Roberts, "when boiled in the water-bath does not coagulate nor sensibly change its appearance, but its behavior with the digestive ferments is completely altered. In the raw state this solution is attacked very slowly by pepsin and acid, and pancreatic extract has no effect on it; but after being cooked in the water-bath the albumen is rapidly and entirely digested by artificial gastric juice, and a moiety of it is rapidly digested by pancreatic extract."
It is a mistake, however, to suppose that cooking is equally necessary for all kinds of albuminoids. The oyster, at least, is quite exceptional, for it contains a digestive ferment—the hepatic diastase—which is wholly destroyed by cooking. Milk may be indifferently used either in the cooked or uncooked state, and fruits, which owe their value chiefly to sugar, are not altered by cooking.
The object in introducing here these remarks on cooking food is to show that it forms an important integral part of the work of digestion, and has a direct bearing on the management of all forms of dyspepsia.