Facultative Carnivore Reasons
This database provides evidence for a hypothesis that humans evolved into facultative carnivores, a type of omnivore that thrives off an all-meat diet, but can survive on fallback foods like gathered plants. We would expect a roughly herbivorous diet with our Last Common Ancestor of Chimpanzees, between 6-10 million years ago. It may have been somewhat bipedal and somewhat arborial. What caused it to evolve to have some many different charactistics compared to other apes? One possibility is that early humans hunted small prey in forests and scavenged for meat on savannahs, increasing the amount of animal protein and fat in their diets. Perhaps persistence running played a role in allowing us to capture megafauna that run away, while tool enhancement, traps, and cooperation allowed us to capture and eat the largest megafauna. We may have targeted the "prime adults" at best seasonal opportunity when animals are known to carry more fat. We could characterize ourselves as omnivores, facultative carnivores, carnivores, apex carnivores, lipivores who nutritionally thrive on a high-fat (60-85% calories), moderate protein (15-35% calories), zerocarb (less than 5% calories, as low as 0 grams/day), zero fiber (0 grams/day), low linoleic acid (2-5% total calories), high omega balance ( total n-3 pufa / total pufa * 100).
However, we do find evidence of increasing plant consumption, especially since the dawn of agriculture, which have led to certain genetic changes that may have made us better omnivores than facultative carnivores. That said, the bulk of our evolution history appears to be under a carnivorous context, so using carnivore diets today may lead to fewer evolutionary mismatches. So the hypothesis is focused on hypercarnivorous diets that led to the best health, whereas hypocarnivorous diets allow survivability, but increase chronic disease in various ways, and have become necessary as megafauna access was wiped out over thousands of years.
Topics: Genetics, Human Evolution, Comparative Anatomy, Animal Fat, Megafauna, Hunting, Stone Tools, Nutrition, Saturated Fat
For a more recent but also more general view of this evidence, subscribe to:
https://www.reddit.com/r/Meatropology
Click on the Red buttons to open more information about the reason, including a details section with important parts of science papers that allude to the hypothesis.
carnivorous-human-trophic-level
The evolution of the human trophic level during the Pleistocene - "Modern humans evolved from a low base to a high, carnivorous position during the Pleistocene."
Title:
Abstract:
The human trophic level (HTL) during the Pleistocene and its degree of variability serve, explicitly or tacitly, as the basis of many explanations for human evolution, behavior, and culture. Previous attempts to reconstruct the HTL have relied heavily on an analogy with recent hunter-gatherer groups' diets. In addition to technological differences, recent findings of substantial ecological differences between the Pleistocene and the Anthropocene cast doubt regarding that analogy's validity. Surprisingly little systematic evolution-guided evidence served to reconstruct HTL. Here, we reconstruct the HTL during the Pleistocene by reviewing evidence for the impact of the HTL on the biological, ecological, and behavioral systems derived from various existing studies. We adapt a paleobiological and paleoecological approach, including evidence from human physiology and genetics, archaeology, paleontology, and zoology, and identified 25 sources of evidence in total. The evidence shows that the trophic level of the Homo lineage that most probably led to modern humans evolved from a low base to a high, carnivorous position during the Pleistocene, beginning with Homo habilis and peaking in Homo erectus. A reversal of that trend appears in the Upper Paleolithic, strengthening in the Mesolithic/Epipaleolithic and Neolithic, and culminating with the advent of agriculture. We conclude that it is possible to reach a credible reconstruction of the HTL without relying on a simple analogy with recent hunter-gatherers' diets. The memory of an adaptation to a trophic level that is embedded in modern humans' biology in the form of genetics, metabolism, and morphology is a fruitful line of investigation of past HTLs, whose potential we have only started to explore.
Hypothesis
Humans evolved into facultative carnivores.
metabolic-flexibility-human-gut-high-fat-diet
Reframing Nutritional Microbiota Studies To Reflect an Inherent Metabolic Flexibility of the Human Gut: a Narrative Review Focusing on High-Fat Diets
Title:
Abstract:
There is a broad consensus in nutritional-microbiota research that high-fat (HF) diets are harmful to human health, at least in part through their modulation of the gut microbiota. However, various studies also support the inherent flexibility of the human gut and our microbiota’s ability to adapt to a variety of food sources, suggesting a more nuanced picture. In this article, we first discuss some problems facing basic translational research and provide a different framework for thinking about diet and gut health in terms of metabolic flexibility. We then offer evidence that well-formulated HF diets, such as ketogenic diets, may provide healthful alternative fuel sources for the human gut. We place this in the context of cancer research, where this concern over HF diets is also expressed, and consider various potential objections concerning the effects of lipopolysaccharides, trimethylamine-N-oxide, and secondary bile acids on human gut health. We end by providing some general suggestions for how to improve research and clinical practice with respect to the gut microbiota when considering the framework of metabolic flexibility.
Hypothesis
We then offer evidence that well-formulated HF diets, such as ketogenic diets, may provide healthful alternative fuel sources for the human gut.
h-pylori-carnivore-genes
An ancient ecospecies of Helicobacter pylori
Title:
Abstract:
Helicobacter pylori disturbs the stomach lining during long-term colonization of its human host, with sequelae including ulcers and gastric cancer1,2. Numerous H. pylori virulence factors have been identified, showing extensive geographic variation1. Here we identify a ‘Hardy’ ecospecies of H. pylori that shares the ancestry of ‘Ubiquitous’ H. pylori from the same region in most of the genome but has nearly fixed single-nucleotide polymorphism differences in 100 genes, many of which encode outer membrane proteins and host interaction factors. Most Hardy strains have a second urease, which uses iron as a cofactor rather than nickel3, and two additional copies of the vacuolating cytotoxin VacA. Hardy strains currently have a limited distribution, including in Indigenous populations in Siberia and the Americas and in lineages that have jumped from humans to other mammals. Analysis of polymorphism data implies that Hardy and Ubiquitous coexisted in the stomachs of modern humans since before we left Africa and that both were dispersed around the world by our migrations. Our results also show that highly distinct adaptive strategies can arise and be maintained stably within bacterial populations, even in the presence of continuous genetic exchange between strains.
Hypothesis
H. pylori is a bacteria that primarily infects carnivores, and humans have carried these carnivore-diet based bacteria with them from Africa as they hunt global megafauna.
The modern distribution of H. pylori ecospecies could be explained if humans had relied principally on hunting when colonizing new locations but that this depleted large prey, leading to a dietary shift.
fat-ingestion-higher-cognition-behavioral-psychology
The ingestion of fat in the human diet unlocked the evolutionary process that led to rational thinking and a higher level of cognition.
Title:
Abstract:
The purpose of this article is to reconcile the hypotheses that: (1) brain evolution occurred due to a change in diet, and (2) it occurred due to pressures related to understanding more and more about the underlying causes, such as understanding increasingly complex manipulative and cooperative intentions on the part of the other, as well as understanding reality itself (and how to interact with it beyond group issues). I argue that the ingestion of fat, a highly energy-efficient food, would have unlocked the evolutionary process that culminated in the emergence of the practice of reasoning about underlying causes; and that the consolidation of such a practice resulted in a continuous pressure to increase cognition about “whys”; so that many explanations ended up imposing the need for additional ones, and with that came a high level of awareness and the need for the brain to evolve not only in terms of providing a higher level of cognition but also in size.
Hypothesis
This study has produced a hypothesis that there is a gas pedal behind human intelligence that could be as simple as the ingestion of animal fat over millions of years. This has always been one of my fundamental ideas behind the creation of this website. I just don't think it's fair to credit other explanations as more fundamental than the ingestion of animal fat.
saturated-fat-villain-or-boogeyman
Saturated fat doesn't correlate to heart disease, meaning that eating it throughout evolution would have been healthy
Title:
Abstract:
Saturated fat: villain and bogeyman in the development of cardiovascular disease?
Abstract
Background
Cardiovascular disease (CVD) is the leading global cause of death. For decades, the conventional wisdom has been that the consumption of saturated fat (SFA) undermines cardiovascular health, clogs the arteries, increases risk of CVD and leads to heart attacks. It is timely to investigate whether this claim holds up to scientific scrutiny.
Objectives
The purpose of this paper is to review and discuss recent scientific evidence on the association between dietary SFA and CVD.
Methods
PubMed, Google scholar and Scopus were searched for articles published between 2010 and 2021 on the association between SFA consumption and CVD risk and outcomes. A review was conducted examining observational studies and prospective epidemiologic cohort studies, RCTs, systematic reviews and meta analyses of observational studies and prospective epidemiologic cohort studies and long-term RCTs.
Results
Collectively, neither observational studies, prospective epidemiologic cohort studies, RCTs, systematic reviews and meta analyses have conclusively established a significant association between SFA in the diet and subsequent cardiovascular risk and CAD, MI or mortality nor a benefit of reducing dietary SFAs on CVD rick, events and mortality. Beneficial effects of replacement of SFA by polyunsaturated or monounsaturated fat or carbohydrates remain elusive.
Conclusions
Findings from the studies reviewed in this paper indicate that the consumption of SFA is not significantly associated with CVD risk, events or mortality. Based on the scientific evidence, there is no scientific ground to demonize SFA as a cause of CVD. SFA naturally occurring in nutrient-dense foods can be safely included in the diet.
Hypothesis
Saturated Fat may have been a main part of our diet if it didn't lead to heart disease. We'd expect an evolutionary appropriate diet wouldn't lead to chronic disease.
dependent-upon-choline-from-animal-foods
Humans are dependent upon eating choline, found mostly in meat and animal products like eggs.
Title:
Abstract:
Humans are unique in their diet, physiology and socio-reproductive behavior compared to other primates. They are also unique in the ubiquitous adaptation to all biomes and habitats. From an evolutionary perspective, these trends seem to have started about two million years ago, coinciding with the emergence of encephalization, the reduction of the dental apparatus, the adoption of a fully terrestrial lifestyle, resulting in the emergence of the modern anatomical bauplan, the focalization of certain activities in the landscape, the use of stone tools, and the exit from Africa. It is in this period that clear taphonomic evidence of a switch in diet with respect to Pliocene hominins occurred, with the adoption of carnivory. Until now, the degree of carnivorism in early humans remained controversial. A persistent hypothesis is that hominins acquired meat irregularly (potentially as fallback food) and opportunistically through klepto-foraging. Here, we test this hypothesis and show, in contrast, that the butchery practices of early Pleistocene hominins (unveiled through systematic study of the patterning and intensity of cut marks on their prey) could not have resulted from having frequent secondary access to carcasses. We provide evidence of hominin primary access to animal resources and emphasize the role that meat played in their diets, their ecology and their anatomical evolution, ultimately resulting in the ecologically unrestricted terrestrial adaptation of our species. This has major implications to the evolution of human physiology and potentially for the evolution of the human brain.
Hypothesis
Humans are reliant upon choline from animal source foods indicating we're at least obligate carnivores if not facultative carnivores.
substantial-evolutionary-rate-change-in-feeding-time
Humans spent less time on feeding compared to other apes, indicating that meat was changing anatomy of molar size through evolution.
Title:
Abstract:
Phylogenetic rate shifts in feeding time during the evolution of Homo
Unique among animals, humans eat a diet rich in cooked and nonthermally processed food. The ancestors of modern humans who invented food processing (including cooking) gained critical advantages in survival and fitness through increased caloric intake. However, the time and manner in which food processing became biologically significant are uncertain. Here, we assess the inferred evolutionary consequences of food processing in the human lineage by applying a Bayesian phylogenetic outlier test to a comparative dataset of feeding time in humans and nonhuman primates. We find that modern humans spend an order of magnitude less time feeding than predicted by phylogeny and body mass (4.7% vs. predicted 48% of daily activity). This result suggests that a substantial evolutionary rate change in feeding time occurred along the human branch after the human–chimpanzee split. Along this same branch, Homo erectus shows a marked reduction in molar size that is followed by a gradual, although erratic, decline in H. sapiens. We show that reduction in molar size in early Homo (H. habilis and H. rudolfensis) is explicable by phylogeny and body size alone. By contrast, the change in molar size to H. erectus, H. neanderthalensis, and H. sapiens cannot be explained by the rate of craniodental and body size evolution. Together, our results indicate that the behaviorally driven adaptations of food processing (reduced feeding time and molar size) originated after the evolution of Homo but before or concurrent with the evolution of H. erectus, which was around 1.9 Mya.
Hypothesis
We find that modern humans spend an order of magnitude less time feeding than predicted by phylogeny and body mass (4.7% vs. predicted 48% of daily activity). This result suggests that a substantial evolutionary rate change in feeding time occurred along the human branch after the human–chimpanzee split.
This order of magnitude difference could be due to eating fatty meat instead of fibrous low quality plants.
tools-cut-meat-decreased-teeth-size-jawbone-chewing-muscles
Eating of meat allowed reduction of size in teeth, jawbone, and chewing muscles.
Title:
Abstract:
Diet and the evolution of the earliest human ancestors
Over the past decade, discussions of the evolution of the earliest human ancestors have focused on the locomotion of the australopithecines. Recent discoveries in a broad range of disciplines have raised important questions about the influence of ecological factors in early human evolution. Here we trace the cranial and dental traits of the early australopithecines through time, to show that between 4.4 million and 2.3 million years ago, the dietary capabilities of the earliest hominids changed dramatically, leaving them well suited for life in a variety of habitats and able to cope with significant changes in resource availability associated with long-term and short-term climatic fluctuations.
Impact of meat and Lower Palaeolithic food processing techniques on chewing in humans
The origins of the genus Homo are murky, but by H. erectus, bigger brains and bodies had evolved that, along with larger foraging ranges, would have increased the daily energetic requirements of hominins1,2. Yet H. erectus differs from earlier hominins in having relatively smaller teeth, reduced chewing muscles, weaker maximum bite force capabilities, and a relatively smaller gut3,4,5. This paradoxical combination of increased energy demands along with decreased masticatory and digestive capacities is hypothesized to have been made possible by adding meat to the diet6,7,8, by mechanically processing food using stone tools7,9,10, or by cooking11,12. Cooking, however, was apparently uncommon until 500,000 years ago13,14, and the effects of carnivory and Palaeolithic processing techniques on mastication are unknown. Here we report experiments that tested how Lower Palaeolithic processing technologies affect chewing force production and efficacy in humans consuming meat and underground storage organs (USOs). We find that if meat comprised one-third of the diet, the number of chewing cycles per year would have declined by nearly 2 million (a 13% reduction) and total masticatory force required would have declined by 15%. Furthermore, by simply slicing meat and pounding USOs, hominins would have improved their ability to chew meat into smaller particles by 41%, reduced the number of chews per year by another 5%, and decreased masticatory force requirements by an additional 12%. Although cooking has important benefits, it appears that selection for smaller masticatory features in Homo would have been initially made possible by the combination of using stone tools and eating meat.
Hypothesis
The shift from fibrous plants to including animal source foods, together with the use of tools, paralleled a decrease in teeth size and jawbones, a reduction in chewing muscles, and weaker maximum bite force capabilities [Teaford & Ungar 2000; Zink & Lieberman 2016]. Homo molars gained steeper slopes and more relief, also suggestive to an adaptation to meat eating [Ungar 2004].
humans-adapted-for-endurance-running-high-temperature
Are humans evolved specialists for running in the heat? Man vs. horse races provide empirical insights
Title:
Abstract:
Many mammals run faster and for longer than humans and have superior cardiovascular physiologies. Yet humans are considered by some scholars to be excellent endurance runners at high ambient temperatures, and in our past to have been persistence hunters capable of running down fleeter quarry over extended periods during the heat of the day. This suggests that human endurance running is less affected by high ambient temperatures than is that of other cursorial ungulates. However, there are no investigations of this hypothesis. We took advantage of longitudinal race results available for three annual events that pit human athletes directly against a hyper-adapted ungulate racer, the thoroughbred horse. Regressing running speed against ambient temperature shows race speed deteriorating with hotter temperatures more slowly in humans than in horses. This is the first direct evidence that human running is less inhibited by high ambient temperatures than that of another endurance species, supporting the argument that we are indeed adapted for high temperature endurance running. Nonetheless, it is far from clear that this capacity is explained by an endurance hunting past because in absolute terms humans are slower than horses and indeed many other ungulate species. While some human populations have persistence hunted (and on occasion still do), the success of this unlikely foraging strategy may be best explained by the application of another adaption – high cognitive capacity. With dedication, experience and discipline, capitalising on their small endurance advantage in high temperatures, humans have a chance of running a more athletic prey to exhaustion.
Hypothesis
New Findings
What is the central question of this study?Do available comparative data provide empirical evidence that humans are adapted to endurance running at high ambient temperatures?
What is the main finding and its importance?Comparing the results of races that pit man against horse, we find that ambient temperature on race day has less deleterious effects on running speed in humans than it does on their quadrupedal adversary. This is evidence that humans are adapted for endurance running at high ambient temperatures. We debate whether this supports the hypothesis that early man was evolutionarily adapted for persistence hunting.
human-mutation-helps-running-faster-further-better-oxygen-usage
Human-like Cmah inactivation in mice increases running endurance and decreases muscle fatigability: implications for human evolution
Title:
Abstract:
Compared to other primates, humans are exceptional long-distance runners, a feature that emerged in genus Homo approximately 2 Ma and is classically attributed to anatomical and physiological adaptations such as an enlarged gluteus maximus and improved heat dissipation. However, no underlying genetic changes have currently been defined. Two to three million years ago, an exon deletion in the CMP-Neu5Ac hydroxylase (CMAH) gene also became fixed in our ancestral lineage. Cmah loss in mice exacerbates disease severity in multiple mouse models for muscular dystrophy, a finding only partially attributed to differences in immune reactivity. We evaluated the exercise capacity of Cmah−/− mice and observed an increased performance during forced treadmill testing and after 15 days of voluntary wheel running. Cmah−/− hindlimb muscle exhibited more capillaries and a greater fatigue resistance in situ. Maximal coupled respiration was also higher in Cmah null mice ex vivo and relevant differences in metabolic pathways were also noted. Taken together, these data suggest that CMAH loss contributes to an improved skeletal muscle capacity for oxygen use. If translatable to humans, CMAH loss could have provided a selective advantage for ancestral Homo during the transition from forest dwelling to increased resource exploration and hunter/gatherer behaviour in the open savannah.
Hypothesis
If translatable to humans, CMAH loss could have provided a selective advantage for ancestral Homo during the transition from forest dwelling to increased resource exploration and hunter/gatherer behaviour in the open savannah. (I.E. hunting animals using persistence hunting, tracking, chasing)
human-microbiomes-specialized-for-animal-based-diets-through-human-evolution
Rapid changes in the gut microbiome during human evolution
Title:
Abstract:
Significance
Human lifestyles profoundly influence the communities of microorganisms that inhabit the body, that is, the microbiome; however, how the microbiomes of humans have diverged from those found within wild-living hominids is not clear. To establish how the gut microbiome has changed since the diversification of human and ape species, we characterized the microbial assemblages residing within hundreds of wild chimpanzees, bonobos, and gorillas. Changes in the composition of the microbiome accrued steadily as African apes diversified, but human microbiomes have diverged at an accelerated pace owing to a dramatic loss of ancestral microbial diversity. These results suggest that the human microbiome has undergone a substantial transformation since the human–chimpanzee split.
Abstract
Humans are ecosystems containing trillions of microorganisms, but the evolutionary history of this microbiome is obscured by a lack of knowledge about microbiomes of African apes. We sequenced the gut communities of hundreds of chimpanzees, bonobos, and gorillas and developed a phylogenetic approach to reconstruct how present-day human microbiomes have diverged from those of ancestral populations. Compositional change in the microbiome was slow and clock-like during African ape diversification, but human microbiomes have deviated from the ancestral state at an accelerated rate. Relative to the microbiomes of wild apes, human microbiomes have lost ancestral microbial diversity while becoming specialized for animal-based diets. Individual wild apes cultivate more phyla, classes, orders, families, genera, and species of bacteria than do individual humans across a range of societies. These results indicate that humanity has experienced a depletion of the gut flora since diverging from Pan.
Hypothesis
Compositional change in the microbiome was slow and clock-like during African ape diversification, but human microbiomes have deviated from the ancestral state at an accelerated rate. Relative to the microbiomes of wild apes, human microbiomes have lost ancestral microbial diversity while becoming specialized for animal-based diets.
cross-species-analysis-carnivore-primate-hominid-behavior
A Cross-species Analysis of Carnivore, Primate, and Hominid Behaviour
Title:
Abstract:
The traditional assumption that the origin of human behavior is found within the higher primates rather than the social carnivores is based on failure to adequately define primate and carnivore behavior. Phyletic classification takes no account of convergence and divergence; the behavior of a species is not necessarily characteristic of its order. Of 8 behavior variables that distinguish the order primates from the order carnivora, preagricultural man resembles the carnivores on 7 items: food sharing, food storing, cannibalism, surplus killing, interspecies intolerance, feeding of young, and division of labor; resembling the order primates only in group defense. The original form ofmuch human behavior is found within the carnivores.
Hypothesis
Preagricultural man resembles the carnivores on 7 items: food sharing, food storing, cannibalism, surplus killing, interspecies intolerance, feeding of young, and division of labor; resembling the order primates only in group defense. The original form of much human behavior is found within the carnivores.